The shape and syntactic place of long-form adjectival inflection in Bosnian/Croatian/Serbian

Aida Talić (University of Illinois at Urbana-Champaign); aita17@illinois.edu
Slavic Linguistic Society 15, Virtually @ Indiana University, Bloomington IN

• In this talk I focus on:
 o the nature of the exponent of BCS long form adjectival inflection.
 o how featural affixes that lack segmental content linearize

• The main empirical puzzle: some seemingly unsystematic prosodic differences between long-form adjectives (LFAs) and short-form adjectives (SFAs):

 (1)

<table>
<thead>
<tr>
<th>SFA</th>
<th>LFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. nôvo:j</td>
<td>nôvo:j</td>
</tr>
<tr>
<td>rising</td>
<td>falling</td>
</tr>
<tr>
<td>b. poštên:oj</td>
<td>pôšteno:j</td>
</tr>
<tr>
<td>rising</td>
<td>left-shifted rising</td>
</tr>
<tr>
<td>c. nôva</td>
<td>nôva:</td>
</tr>
<tr>
<td>rising+ short V#</td>
<td>falling+long V#</td>
</tr>
<tr>
<td>d. vêlika</td>
<td>vêlika:</td>
</tr>
<tr>
<td>short V#</td>
<td>long V#</td>
</tr>
<tr>
<td>e. vêliko:j</td>
<td>vêliko:j</td>
</tr>
<tr>
<td>falling</td>
<td>falling</td>
</tr>
</tbody>
</table>

→ Preview: The main observation (when a toneless adjectival stem (ADJ) is followed by a suffix with a lexical High (H) tone):

 (2)

 a. SFA: \([xx]_{ADJ} + [x^H]_{SFX}\) => ✓ interaction

 b. LFA: \([xx]_{ADJ} + [x^H]_{SFX}\) => ✗ interaction

• Q: Is the interaction is blocked by a spell-out domain boundary?
 → No, this would make wrong predictions in many cases;
 → In LFAs, stems gain a stem-final H tone before combining with the AGR suffix.
 → So, while cyclicity of vocabulary insertion will be shown to matter, the presence of a phase head is not responsible for this contrast.

• I will also show that the stem-final H tone is not a result of the final vowel lengthening that takes place in some LFA forms.
Quite the opposite: the lengthening results from:
- the presence of an empty mora (µ) preceding the AGR suffix,
- compensatory vowel lengthening that often accompanies language change.

- Regarding syntactic structure, the pattern here will also provide support for richer structure in the context of LFAs.
- From a diachronic perspective, I will discuss where this H tone comes from.
- (What may be one point of cross-dialectal variation in adjectival morphology.)

Roadmap:
§1 Adjectival inflection in BCS
§2 The prosodic pattern and the nature of LFA inflection exponent
§3 The structure of adjectives
§4 Compensatory lengthening
§5 Contextual allomorphy of AGR suffixes

1 On adjectival inflection in BCS

Q: How are LFAs and SFAs distinguished?
- Traditional grammars: different declensions (+ prosodic differences)
 (3)
a. SFA: Nominal declension (ND) suffixes = plá:v–a ‘blue-ACC.M’
b. LFA: Pronominal declension (PD) suffixes = plà:v–o:g(a) ‘blue-ACC.M’
→ but: (i) this distinction is only present in some cases in SG.M and SG.N;
 (ii) in other contexts, the suffix is identical in both forms if it has a long vowel;
 (iii) if V is short in SFA, this V is long in LFA.

- Aljović (2002):
 o Contemporary BCS only has a special suffix for LFAs in NOM.SG.M, while PD suffixes are used in both forms elsewhere;
 o LFA/SFA distinction is mostly prosodic; and
 o ND suffixes on adjectives are stylistically marked.

- A short survey with 43 BCS speakers confirms this observation:
 (4)

<table>
<thead>
<tr>
<th></th>
<th>plav-a blue-ACC.M.ND</th>
<th>plav-o:g blue-ACC.M.PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>1.94</td>
<td>6.82</td>
</tr>
<tr>
<td>SD</td>
<td>1.14</td>
<td>0.47</td>
</tr>
</tbody>
</table>
So, I will put aside the ND suffixes and get back to this variation if there is time.

- Important note: SFAs with PD suffixes have the same prosody as SFAs with ND suffixes (see Riđanović 2012), so the same account of prosody will apply to both types.

2 The prosodic pattern

- BCS Accent (see e.g. Browne & MacCawley 1965; Masing 1876; Lehiste and Ivić 1986; Inkelas & Zec 1988):
 - A **falling** accent is a result of a word-initial High tone.¹
 - A **rising** accent is a result of a non-word-initial High tone undergoing spreading to the preceding syllable and making it prominent.
 - Roots and affixes are either toneless or have a lexical H
 - In a sequence of multiple H tones in a domain, the left-most H wins
 - Roots with a lexical H obscure the LFA/SFA contrasts, so I will put them aside.
 - In the absence of a H tone in a domain; a default initial H tone is inserted

- Consider the paradigms for a monosyllabic and a disyllabic stem without a lexical H:

<table>
<thead>
<tr>
<th></th>
<th>SFA</th>
<th>LFA</th>
<th>SFA</th>
<th>LFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>plà:Hv -\textsuperscript{\text{-\text{o}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{i}:}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{o}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{i}:}}</td>
</tr>
<tr>
<td></td>
<td>plà:\textsuperscript{\text{-\text{a}}}H</td>
<td>plà:Hv -\textsuperscript{\text{-\text{a}:}}H</td>
<td>zelén -\textsuperscript{\text{-\text{a}}}H</td>
<td>zéleHn -\textsuperscript{\text{-\text{a}:}}H</td>
</tr>
<tr>
<td>GEN</td>
<td>plà:\textsuperscript{\text{-\text{o}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{o}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>zelén -\textsuperscript{\text{-\text{o}}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{o}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
</tr>
<tr>
<td></td>
<td>plà:\textsuperscript{\text{-\text{e}}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{e}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>zelén -\textsuperscript{\text{-\text{e}}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{e}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
</tr>
<tr>
<td>ACC</td>
<td>plà:\textsuperscript{\text{-\text{u}}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{u}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>zelén -\textsuperscript{\text{-\text{u}}}\textsuperscript{\text{\text{-\text{g}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{u}:}}\textsuperscript{\text{\text{-\text{g}}}</td>
</tr>
<tr>
<td>DAT/LOC</td>
<td>plà:\textsuperscript{\text{-\text{m}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{m}}}</td>
<td>zelén -\textsuperscript{\text{-\text{m}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{m}}}</td>
</tr>
<tr>
<td></td>
<td>plà:\textsuperscript{\text{-\text{j}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{j}}}</td>
<td>zelén -\textsuperscript{\text{-\text{j}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{j}}}</td>
</tr>
<tr>
<td>INST</td>
<td>plà:\textsuperscript{\text{-\text{m}}}</td>
<td>plà:Hv -\textsuperscript{\text{-\text{m}}}</td>
<td>zelén -\textsuperscript{\text{-\text{m}}}</td>
<td>zéleHn -\textsuperscript{\text{-\text{m}}}</td>
</tr>
</tbody>
</table>

→ **SFAs**: the suffix preceded by a rising tone => the suffix has a lexical H tone
→ **LFAs**: we can also identify the place of H tones by the contour:
 - Falling => the H tone is on that syllable (plà:\textsuperscript{\text{\text{-\text{g}}} \text{-\text{v}}}\textsuperscript{\text{\text{-\text{o}:}}\textsuperscript{\text{\text{-\text{g}}} |}
 - Rising => the H tone is on the following syllable (zéleHn -\textsuperscript{\text{-\text{o}:}}\textsuperscript{\text{\text{-\text{g}}} |)

¹ A number of studies have argued that BCS words are delimited by Low (L) tones, which yields the falling/rising contours through the interaction with High tone, vowel length, and stress (Smiljanić 2002; Zsiga & Zec 2012). I focus on High tones and put Low tones aside because only the former matter for the discussion here.
Long-form adjectives have an **extra High tone** on the final vowel of the stem.

→ This tone is the leftmost in the sequence and wins over the H on the suffix

Q: Where does this H come from?

- **Phonologically motivated insertion? Domains? Spell-out domain boundary?**
 - If the stem forms an *accentual domain* to the exclusion of the suffix in LFAs, default H would need to be inserted in the absence of a lexical H on the stem.

 E.g. something like this happens with enclitics in Central Bosnian dialect (Talić 2018, Talić and Shosted in prep):

 (7) a. Štá mu je dao?
 what_him.dat is give
 ‘What did he give to him?’

 b. Štà mu daje?
 what_him.dat gives
 ‘What is he giving to him?’

- Talić (2018): there is an SOD between the two in (7b), but not in (7a), so šta is an accental domain on its own in (7b) (default H insertion), but not in (7a) (H-tone spreading from mu).

→ Similarly, if the stem is a separate domain in LFAs, but not in SFAs, we’d expect the toneless stems in LFAs to always get a **default H tone**.

→ but: Default H is *initial*, which would predict that all LFAs with toneless roots have initial **falling tone**

→ This works for monosyllabic stems, but not for disyllabic ones, which crucially do not get an initial H tone (see (5)).

→ So, domains are not responsible for the contrasts.

- **Phonological repair?**
 - Despić (2011) proposes a phonological readjustment rule triggered by a constraint:

(8) High-Low (HL) sequence is disallowed word-finally when the word is polysyllabic.

 - Repair: The H tone needs to be inserted to a non-word-final vowel
 - Here the stem-final H here is parasitic on the final-V lengthening in LFAs
This account works well for the pairs of adjectives with the final V-lengthening (9):

<table>
<thead>
<tr>
<th>Short Form</th>
<th>Long Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. spora</td>
<td>spora a</td>
<td>‘slow’</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>b. zelen a</td>
<td>zelen a a</td>
<td>‘green’</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

→ Prediction: If both forms have a long V in the final syllable, there should be no prosodic contrast between them - (8) would rule out the final HL sequence in both forms.
→ Not what we find either

Proposal: This stem-final H tone is the exponent of LFA inflection.

Similar to tones marking morphosyntactic features in other languages: E.g.
 - the exponent of the Q morpheme in Hausa is a segmentally empty suffix with a L tone (Newman & Newman 1981),
 - the exponent of the absolutive morpheme in Samoan is also a High tone (Yu 2020)

Featural affixes like these often result from a language change where the exponent loses its segmental content (*orphaned tones* (Michaud 2006)):
 - E.g. While in written descriptions of Samoan the absolutive marker is *ia*, Yu (2020) observes that none of her consultants produced that marker spontaneously, and they only mark absolutive with a H tone.

→ Similarly, the exponent of LFA inflection in Old-Church Slavonic stems from a pronominal element that had segmental content (Schenker 1993:91; Aljović 2010; also Friday’s talk by Florian Wandl).
In contemporary BCS, it is not clear that any of the forms contain even remnants of the segmental content of this pronominal element, i.e. only the H tone remains.

So, the exponent for the LFA inflection is inserted as a segmentally empty mora with a floating H tone.

Being unlinked to a vowel, the floating tone links to the vowel preceding it:

(12) \[\mu \ldots \mu \rightarrow \mu \ldots \mu \]
\[V \varnothing \rightarrow V \varnothing \]
\[H \rightarrow H \]

(see e.g. Goldsmith 1976 for floating tones in Subsaharan languages.)

The more precise morphological segmentation of SFAs and LFAs is then:

(13) SFA: a. plá:v-o:^Hj
ADJ-AGR
b. zelén-o:^Hj
ADJ-AGR
c. ve^Hlik-o:^Hj
ADJ-AGR

(14) LFA: a. plá:v-o^H-o:^Hj
ADJ-X-AGR
\textit{falling}
b. zélen-o^H-o:^Hj
ADJ-X-AGR
\textit{shifted rising}
c. ve^Hlik-o^H-o:^Hj
ADJ-X-AGR
\textit{neutralized}

3 The structure of adjectives

Q: What precisely is this extra H tone the exponent of?

- Previous work on BCS Adjs: there is more structure in the context of LFAs than SFAs.
 - Aljović (2002): \textbf{FP in the domain of N} (specificity related)
Talić (2015, 2017): **XP in the domain of A** (motivated by locality of movement and certain cross-linguistic variation in adverb extraction; see also Marušič and Žaucer 2006 for Slovenian “adjectival definite article” and a suggestion that BCS LFAs might correspond to these contexts).

(16)
\[
\begin{align*}
\text{a. SFA} \\
\text{AP} & \quad \text{A} \\
\text{b. LFA} \\
\text{XP}_{\text{AP}} & \quad \text{X}_{\text{AP}} & \quad \text{AP} & \quad \text{A}
\end{align*}
\]

- Now, if \([\phi^H] \) is the exponent of the functional head associated with LFAs, that head somehow needs to end up between ADJ and AGR:

(17)
\[
\begin{align*}
\text{plà:v} & \quad -\phi^H & \quad -\phi^H_j \\
\text{blue} & \quad -lf & \quad -\text{dat.f.sg}
\end{align*}
\]

Q: Problem for Aljović (2002)?

- This analysis has two AGR slots:

(18)
\[
[[\text{ADJ}-\text{AGR}] -\text{F} -\text{AGR}] \\
\rightarrow [\phi^H] \text{ would be separated from ADJ by AGR}
\]

Q: Can contextual allomorphy help?

(19)
\[
[\text{AGR}] \rightarrow \phi / _________F \quad \text{or} \quad \ldots \ldots [\phi^H] \\
\rightarrow \text{but: under this account the exponent of } F \text{ attaches to the AP as a clitic after AP has been created, so it is not present when AGR on AP is realized.}
\]

Q: Can we suggest that AP does not have AGR in LFAs?

- After all, in contemporary BCS, we don’t really see two AGR slots realized.

 \[\rightarrow \text{but: F is in the extended domain of N, so AP and F are not in the same domain.} \]

 \[\rightarrow \text{It is not clear why APs would have AGR features everywhere but here.} \]
Q: Problem for Talić (2015, 2017)?
Q: With X in the domain of A, would we get the incorrect ADJ-AGR-X order?

→ not necessarily:
 o AGR nodes are dissociated morphemes inserted in PF (Embick 1997; Kramer 2009)
 o ADJ and X combine before AGR node is inserted

• The simplest option for this timing: syntactic head movement:
 → but: In head-initial languages where a lexical head raises to the higher functional head in the syntax, the lexical head precedes its modifiers (see e.g. Carstens 2008 for Bantu)

\[(20)\]

\[\begin{array}{ll}
 \text{a. réj-no} & \text{b. búg osjèp-na} \\
 \text{fish-that} & \text{book friend-my} \\
\end{array}\]

\[\text{N precedes dem, poss}\]

\[\text{‘that fish’} \quad \text{‘my friend’s book’}\]

\[(21)\]

\[\begin{array}{ll}
 \text{a. Oduól o-7ol ahína.} & \text{b. Oduól n-ó-neo kóti mabér ahípa.} \\
 \text{Oduol 3sg-tired very} & \text{Oduol past-3sg-buy jacket beautiful very} \\
 \text{‘Oduol is tired.’} & \text{‘Oduol bought a beautiful jacket.’} \\
\end{array}\]

\[\text{[Luo (Nilotic); Talić Sp20 Field Notes]}\]

→ not attested in BCS:

\[(22)\]

\[\begin{array}{ll}
 \text{a. *skupi izuzetno} & \text{b. *skup izuzetno} \\
 \text{expensive.LF extremely} & \text{expensive.SF extremely} \\
\end{array}\]

• So, I will adopt a PF-lowering account (Marantz 1984; Bobaljik 1995):
 (i) X lowers to ADJ

\[(23)\]

\[\begin{array}{ll}
 \text{a.} & \text{b.} \\
 \text{AP}_{[\varphi]} & \text{XP} \\
 \text{(AdvP)} & \text{X} \\
 \text{AP}_{[\varphi]} & \text{AP}_{[\varphi]} \\
 \text{A}_{[\varphi]} & \text{A}_{[\varphi]} \\
 \text{A}_{[\varphi]} & \text{X} \\
\end{array}\]
• Now, both SFAs and LFAs show concord.
 (ii) AGR is inserted to the agreeing head:

(24) $A \rightarrow [A+\text{AGR}]$

- Embick and Noyer (1999): Size matters for post-syntactic adjunction: MWd adjoins to MWd, SWd adjoins to SWd.
- Prior to adjunction AGR is an MWd

\rightarrow In both forms AGR is inserted to the highest X^0 with the relevant features, not to SWds.

(25) a.

```
  / \  
  |   |  AGR 
  |   |   | 
  X   A[φ]  
  |   |  AGR 
  |   |   | 
  X   A[φ]  X
```

Finally, after vocabulary insertion has applied to all the terminal nodes, we get:

(26) a.

```
  / \  
  |   |  AGR  -φ\text{H}:j  -\text{DAT.SG.F} 
  |   |   |   | 
  A[φ]  AGR  -φ\text{H}:j  -\text{DAT.SG.F} 
  |   |   |   | 
  A[φ]  X  X  LF
```

\rightarrow This captures the blocking effect that the H tone introduced as the exponent of LFA inflection has on H-tone spreading from AGR to ADJ.

\rightarrow Under this account, we only need one AGR; no need to post two and then delete one.

\rightarrow This is possible here because X is in the same domain as A.

\rightarrow Under, Aljović’s account we’d either need two AGRs, or at least one on the AP.
\rightarrow But in both situations, we’d expect the same tone on ADJ in both forms.
4 Compensatory vowel lengthening

Q: Why does the final V lengthen in the long form?

(27)

→ After the exponent of AGR is inserted, it spreads into the empty mora preceding it.

Q: But if this mora does get the segmental content eventually, why does the floating H tone introduced with it need to link to the stem at all?

• Vocabular Insertion rules apply cyclically: (i) pla:v, (ii) -Ø[H], (iii) -a[H].

(28) Rules Apply:
Perform a computation when the structural description of the rule is met.
(from Embick and Marantz 2008:27)

→ When [Ø[H]] is inserted, the AGR suffix is not present:

(29)

• Now, [Ø[H]] historically originates from a pronoun that had at least one syllable.

• Diachronic changes where the content of a nucleus or a coda is deleted lead to compensatory V-lengthening where the empty mora is not deleted, but filled by the content from adjacent vowels (see e.g. Hayes 1989; Kiparsky 2010)
(30) *gliding of a prevocalic [o] leads to [a]-lengthening in Pāli*

\[\begin{array}{c}
\sigma & \sigma & \sigma \\
\mu & \mu & \mu
\end{array} \quad \rightarrow \quad \begin{array}{c}
\sigma & \sigma & \sigma \\
\mu & \mu & \mu
\end{array} \quad (\text{Kiparsky 2010})\]

- So, V-lengthening in BCS also suggests that there is a mora left after the segmental content of the LFA inflection exponent has been deleted.

→ And when the AGR exponent is inserted, it spreads to the empty mora.

(31) *LFA stem after the VI of AGR*

\[\begin{array}{c}
\sigma & \sigma \\
\mu & \mu & \mu & \mu & \mu
\end{array} \quad \rightarrow \quad \begin{array}{c}
\sigma & \sigma & \sigma \\
\mu & \mu & \mu & \mu & \mu
\end{array} \]

→ This length is not a part of the underlying representation of these AGR exponents in LFAs, but a regular and independently motivated process that occurs very frequently cross-linguistically (see Jensen 1977 (Yapese); Timberlake 1983 (Slavic); Hock 1986 (Balto-Slavic, Hungarian, Jutland Danish, Korean, dialects of German, Slavic) Repetti 1989 (Friulian)).

5 **Contextual allomorphy of AGR suffixes**

Back to a couple of remaining questions:

Q: If \([-\partial^H]\) is the exponent of the functional head X present in LFAs, what is the suffix -i: in NOM.SG.M the exponent of?

Q: What is the difference between BCS speakers that use ND suffixes in addition to the prosodic differences and the ones that do not?

2 Length present in both forms is.
3 This is a condensed version, see Talić (under review) for more details.
5.1 Nominative singular masculine

- [-i:] is not an LFA inflection exponent, but an AGR exponent:

(32) a. NOM.SG.M → \(\sigma^H\{N,A\}\)_4
 b. NOM.SG.M → -i:

- Evidence: [-i:] does not only distinguish between SFAs and LFAs:
 o Also found in comparatives and superlatives, which are not LFAs:

(33) a. *Mak Dizdar je poznat[-i],
 Mak Dizdar is famous.LF-AGR

b. Mak Dizdar je poznatij[-i] od Abdulaha Sidrana.
 Mak Dizdar is famous.CMPR-AGR than Abdulah Sidran
 ‘Mak Dizdar is more famous than Abdulah Sidran.’

c. Mak Dizdar je naj-poznatij[-i] od svih bosanskih pjesnika.
 Mak Dizdar is most-famous.CMPR-AGR than all Bosnian poets
 ‘Mak Dizdar is the most famous poet.’

Q: Why do comparatives and superlatives get [-i:]?

Bobaljik (2012): comparatives/superlatives project functional structure on top of AP:

(34)

Then, AGR is separated from the A stem by this functional structure, removing the context for the application of (32a), and leading to the default rule.

- Also found in:
 o Ordinal numbers: prv-i: (1st), drug-i: (2nd), treć-i: (3rd)…
 o Interrogative and indefinite adjectives: koj-i: (which), nek-i: (some)…
 o Subset of exclusively attributive adjectives: bivš-i: (former), mašinsk-i: (mechanical)…

\[4\text{ This is another segmentally null item in BCS that has only a High tone.} \]

Compare: (i) plá:v-\(\sigma^H\) ‘blue.M.SF’ (ii) zelen-\(\sigma^H\) ‘green.M.SF’
 (iii) plá:v-\(a^H\) ‘blue.F.SF’ (iv) zelen-\(a^H\) ‘green.F.SF’
5.2 Nominal vs. pronominal declension suffixes

- Recall: two types of dialects regarding SFA vs. LFA distinction:
 o Type 1: prosodic distinction + ND vs. PD in SG.M and SG.N
 o Type 2: prosodic distinction + øH vs. [-i:] in NOM.SG.M

(35) Type 1 SFA Type 2 SFA Type 1& Type 2 LFA
 a. crvén-u c. crvén-o:m e. c´rven-o:m
 red-DAT.SG.M.ND red-DAT.SG.M.PD red-DAT.SG.M.PD
 b. zelén-u d. zelén-o:m f. zélen-o:m
 green-DAT.SG.M.ND green-DAT.SG.M.PD green-DAT.SG.M.PD

Type 1: with ND suffixes in SFAs:
(36) a. DAT.SG.M \rightarrow u/{\{N,A\}_____} \quad -ND\ suffix
 b. DAT.SG.M \rightarrow -o:m \quad -PD\ suffix

Type 2: with PD suffixes in neutral SFAs and ND suffixes in stylistically marked SFAs:
(37) a. DAT.SG.M \rightarrow u/{\{N, A_{[style]}\}_____} \quad -ND\ suffix
 b. DAT.SG.M \rightarrow -o:m \quad -PD\ suffix

6 Conclusion

- Primary distinction between LFAs and SFAs is prosodic (tone and length)
- Both follow from the presence of a segmentally empty mora with a floating H tone, which I argued to be the exponent of the LFA inflection
- This suffix is a remnant of a language change from Old-Church Slavonic to contemporary BCS that removed its segmental content.
- Placing the functional structure associated with LFAs in the adjectival domain captures why AGR ends up separated from the stem, as well as why only one AGR suffix per adjective is visible in both SFAs and LFAs.
Appendix: Sample items from the survey in (4).

(38) Context: Na cijelom ovom putovanju nije vidio _______ papagaja.
(Nemate nikakvog posebnog papagaja na umu.).
‘On this entire journey, he has not seen a (any) _______ parrot.
(You don’t have any particular parrot in mind.)’

(39) Context: Na klupi je sjedila djevoka _______ lica.
‘A young woman with a _______ face was sitting on the bench.’

References:

Recherches linguistiques de Vincennes 31. 27-42.

Talić, Aida. under review. Featural affixation, tone, and structure of adjectives.

